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What is Mu2e

New experiment under construction at Fermilab.
We are looking for new physics – charged lepton flavor violation.
Rare interaction: muon converting to electron, without neutrinos,
in the presence of an atomic nucleus.

Standard Model rate: < 10−50

New physics rates: 10−17 − 10−15
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What is Mu2e
Mu2e will detect branching ratios as low as 8× 10−17 at 90% CL

which is four orders of magnitude more sensitive than previous ex-
periments. 3 / 22



What is Mu2e
Single event sensitivity 3× 10−17

Requires most intense muon beam ever developed – 1010 µ/s!
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What is Mu2e

Experimental overview:
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Production Target
Muons are produced for Mu2e in the Production Solenoid (PS),
which contains the production target.

Production target: tungsten, 6.3 mm diameter, 160 mm long, held
in place by thin spokes
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Production Target

I 8 GeV pulsed proton beam
I Target absorbs ∼ 700 W from beam, or 140 W/cm3

I Beam-target interactions produce pions which decay to muons
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Production Target

I Magnetic field gradient guides backwards µ− toward the
Transport Solenoid (TS)

I Spent beam and beam backgrounds directed away from muon
stopping target and detectors

7 / 22



A Production Target Requirement

Primary goal = maximize muon production.

Muon stops in the stopping
target drop significantly if
proton beam is even slightly
mis-aimed.

Requirement: proton beam hits the target along its central axis,
to within ±0.5 mm.

8 / 22



A Production Target Requirement

Primary goal = maximize muon production.

Muon stops in the stopping
target drop significantly if
proton beam is even slightly
mis-aimed.

Requirement: proton beam hits the target along its central axis,
to within ±0.5 mm.

8 / 22



A Production Target Requirement

Primary goal = maximize muon production.

Muon stops in the stopping
target drop significantly if
proton beam is even slightly
mis-aimed.

Requirement: proton beam hits the target along its central axis,
to within ±0.5 mm.

8 / 22



A Production Target Requirement

Primary goal = maximize muon production.

Muon stops in the stopping
target drop significantly if
proton beam is even slightly
mis-aimed.

Requirement: proton beam hits the target along its central axis,
to within ±0.5 mm.

8 / 22



A Production Target Requirement

Primary goal = maximize muon production.

Muon stops in the stopping
target drop significantly if
proton beam is even slightly
mis-aimed.

Requirement: proton beam hits the target along its central axis,
to within ±0.5 mm.

8 / 22



A Production Target Requirement

Primary goal = maximize muon production.

Muon stops in the stopping
target drop significantly if
proton beam is even slightly
mis-aimed.

Requirement: proton beam hits the target along its central axis,
to within ±0.5 mm.

8 / 22



A Production Target Requirement

Primary goal = maximize muon production.

Muon stops in the stopping
target drop significantly if
proton beam is even slightly
mis-aimed.

Requirement: proton beam hits the target along its central axis,
to within ±0.5 mm.

Some type of instrumentation will be necessary to ensure this.
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The Challenge

No instrumentation can go inside the PS.

I Any additional
material will absorb
pions and reduce
muon production

I Hypothetical
unobtrusive
instrumentation has
to contend with heat
and radiation from
the target, magnetic
field gradient

Any instrumentation has to be outside the PS, far from the target.
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Goal

Instrumentation outside the PS – wire chambers upstream and
downstream

Goal: take beam position and
intensity before AND after
interacting with target, and
reconstruct what happened at
the target.

Multiple measurements, scanning beam across target → find
optimal positioning
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Beam Position
Steering the beam around the target traces paths on the upstream
and downstream detectors.

Simulation: steering beam angle or position on target traces out
straight line on upstream and downstream detectors.
Relationship between beam at target and beam on detectors
appears simple

I Confirmation of beam steering
I Calculate position of target

11 / 22



Total Integrated Signal

Proportional chambers respond to particle energy passing through.
Beam misses target → entire beam passes through upstream and
downstream detectors.
Beam hits target → target scatters beam, downstream detector
picks up fewer total beam protons than upstream

Downstream proton count varies with beam aim on target in a
predictable way
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Detector Requirements
Location

I Close to target: beam path is short, less opportunity to curve
in the magnetic field, BUT detector cannot go inside PS

I Far from target: beam angle changes result in large position
changes → easier to reconstruct beam angle

I Upstream detector as close to PS as possible
I Downstream detector 3.5 m downstream from PS
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Detector Requirements
Size

I Active cross section must cover entire area beam can be
steered – range of motion is ± 1 cm, ± 0.15° in x and y at
the target

I Upstream: inside beam pipe
I Downstream: simulation indicates beam covers 8 cm × 8 cm

area in proposed location
I This size requirement allows us to use standard detectors

produced at Fermilab
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Detector Requirements
Type

I Need beam position and intensity – proportional wire
chambers

I Commonly-used type at Fermilab:
I 9.6 cm × 9.6 cm active cross section
I 2 mm wire pitch
I tungsten wire
I ArCO2 gas, near atmospheric pressure
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Detector construction

Selected a design for downstream detector.
Built two wire chambers to be placed downstream.
Have built one set of readout electronics.
Source tests with Sr-90 indicate detectors and electronics are
working.
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Remaining work

I Test detectors in the transport line to Mu2e (next year)
I Beam profile – what can this tell us?
I Refine beam position reconstruction method
I Develop scanning protocol for beam aim at startup
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Summary

I Mu2e is looking for new physics in neutrinoless
muon-to-electron conversion

I We will create the most intense muon beam in history, using a
radiation-cooled production target under harsh conditions and
which cannot be instrumented directly

I In order to understand how our proton beam is interacting
with our production target, we are developing a remote
monitoring system composed of wire chambers upstream and
downstream of the target

I These wire chambers can give us position and intensity
measurements, which, when combined, will allow us to align
the beam with the target

I Data in 2023!
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Backup Slides
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Mu2e Pulsed Proton Beam

21 / 22



Target Shadow at Positions Downstream
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